宝贝快好(www.bbwell.cn)宠物健康知识百科,为您免费提供养猫养狗的好处坏处和注意事项、在线咨询。

微信
手机版
黑色皮肤 蓝色皮肤

质谱分析是什么?,质谱分析怎么分析

2023-01-31 17:51:28 宝贝快好 宠物大全 来源:互联网

 

质谱分析是什么?,质谱分析怎么分析:今天宝贝快好宠物网给各位分享蛋白质相互作用质谱分析的知识,其中也会对质谱分析是什么?(质谱分析怎么分析)进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!……宝贝快好www.bbwell.cn)小编为你整理了本篇文章,希望能解对你有所帮助!

 

今天宝贝快好宠物网给各位分享蛋白质相互作用质谱分析的知识,其中也会对质谱分析是什么?(质谱分析怎么分析)进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!

质谱分析是什么?

质谱分析本是一种物理方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。第一台质谱仪是英国科学家阿斯顿(F.W.Aston,1877—1945)于1919年制成的。出手不凡,阿斯顿用这台装置发现了多种元素同位素,研究了53个非放射性元素,发现了天然存在的287种核素中的212种,第一次证明**质量亏损。他为此荣获1922年诺贝尔化学奖。 质谱仪开始主要是作为一种研究仪器使用的,这样用了20年后才被真正当作一种分析工具。它最初作为高度灵敏的仪器用于实验中,供设计者找寻十分可靠的结果。早期的研究者们忙着测定精确的**量和同位素分布,不能积极地去探索这种仪器的新用途。 由于同位素示踪物研究的出现,质谱仪对分析工作的用处就越发变得明显了。氮在植物中发生代谢作用的生物化学研究要求用15N作为一种示踪物。但它是一种稳定的同位素,不能通过密度测量来精确测定,所以质谱仪就成了必要的分析仪器。这种仪器在使用稳定的13C示踪物的研究中以及在基于稳定同位素鉴定的工作中也是很有用的。标准型的质谱仪到现在已经使用了大约45年。 40年代期间,石油工业在烃混合物的分析中开始采用质谱仪。尽管这种质谱图在定量解释时存在着难以克服的计算麻烦,但在有了高速计算机后,这种仪器就能在工业方面获得重大的成功。 (1)近20年来质谱技术随着新颖电离技术,质量分析技术,与各种分离手段的联用技术以及二维分析方法的发展,质谱已发展成为最广泛应用的分析手段之一。其最突出的技术进步有以下几个方面: 新的解吸电离技术不断涌现,日趋成熟,可测分子量范围越来越高,并逐步适用于难挥发、热敏感物质的分析,例如海洋天然产物、微生物代谢产物,动植物二次代谢产物以及生物大分子的结构研究。最有发展前景的电离方法有: ①等离子解吸采用252Cf的裂介碎片作为离子源,使多肽和蛋白质等生物大分子不必衍生化而直接电离进行质量分析。它与飞行时间质谱相配合,已成功地用于许多合成多肽的质谱分析,并已在一些实验室中作为常规分析方法来鉴定多肽和蛋白质。目前它的可分析的质量极限大约是50000D。 ②快**轰击,把样品分子放入低挥发性液体中,用高速中性**来进行轰击,可使低挥发性的,热敏感的分子电离,得到质子化或碱金属离子化的分子离子。由于很容易在磁质谱或四极杆质谱上安装使用,因此得到广泛应用,分子量很容易达到3000—4000。如果与带有后加速的多次反射阵列检测器的高性能磁质谱配合使用,可测分子量可达到10000amn以上,最高记录可达25000amn。 ③激光解吸,利用CO2激光(10.6μm),Nd/YAG激光(1.06μm)的快速加热作用使难挥发的分子解吸电离,与飞行时间质谱或离子回旋共振质谱相配合成功地分析了一系列蛋白质和酶的复合物,并创造了蛋白质分子质量分析的最高记录(Jack Bean Urease Mr~27万)。 ④电喷雾(electro spray,electrostatic spray,ion spray)把分析样品通过常压电离源,使分子多重质子化而电离。由于生成多重质子化的分子离子可缩小质荷比,因此一个分子量为数万的生物大分子,如果带上几十个,上百个质子,质荷比可降低到2000以下,可以用普通的四极杆质谱仪分析,其次由于得到一组质荷比连续变化的分子离子峰,通过对这些多电荷分子离子峰的质量计算可以得到高度准确的平均分子量。第三是这种多重质子化的分子离子峰可进一步诱导碰撞活化,进行串联质谱分析。第四是这种电离技术的样品制备要求极低,溶于生物体液的样品分子或HPLC,CZE的流出液都可直接引入常压电离源进行联机检测。 (2)各种联用技术。色谱、电泳等分离方法与质谱分析相结合为复杂混合物的在线分离分析提供了有力的手段,GC—MS联用技术的应用已得到充分的证明。近年来把液相色谱、毛细管电泳等高效分离手段与质谱连接已在分析强极性、低挥发性样品的混合物方面也取得了进步。主要的接口技术有: ①粒子束(particle beam),它能把液相色谱与质谱连接起来,其优点是得到的质谱与普通的EIMS谱十分接近,因此可以用标准谱库的数据去检索。缺点是要耗用大量的氦气,并且只能分析中等极性和中等分子量(2000以下)的分子。 ②热喷雾(thermospray),是目前与HPLC连接最广泛使用的接口技术。它是一种软电离技术,可测的分子量上限大约为8000amn,缺点是流速需要0.12ml/min,对于质谱分析来说仍嫌太大。 ③连续流快**轰击(CF—FAB),利用适当孔径的石英毛细管把液相色谱的流出液直接引入FAB电离源,进行连续的FAB—MS分析。由于它的流速小于5μl/min,与质谱仪更为匹配,因此具有更大的应用潜力。 ④电喷雾。由于采用常压电离源,因此很容易把微细径柱液相色谱,甚至普通液相色谱(只要有适当的分流装置)通过它与质谱连接起来。最近藉此把毛细管区带电泳与质谱连接起来也取得了成功,实现了高灵敏度(10-15mol),高分离效力(25万理论塔板数)的联用分析。这是一种极有希望,并很有发展前途的联用技术。 (3)串联质谱等二维质谱分析方法。如果把二台质谱仪串联起来,把第一台用作分离装置,第二台用作分析装置,这样不仅能把混合物的分离和分析集积在一个系统中完成,而且由于把电离过程和断裂过程分离开来,从而提供多种多样的扫描方式发展二维质谱分析方法来得到特定的结构信息。 本法使样品的预处理减少到最低限度,而且可以抑制干扰,特别化学噪音,从而大大提高检测极限。 串联质谱技术对于利用上述各种解吸电离技术分析难挥发、热敏感的生物分子也具有重要的意义。首先解吸电离技术一般都使用底物,因此造成强的化学噪音,用串联质谱可以避免底物分子产生的干扰,大大降低背景噪音,其次解吸电离技术一般都是软电离技术,它们的质谱主要显示分子离子峰,缺少分子断裂产生的碎片信息。如果采用串联质谱技术,可使分子离子通过与反应气体的碰撞来产生断裂,因此能提供更多的结构信息。 近年来把质谱分析过程中的电离和碰撞断裂过程分离开来的二维测定方法发展很快,主要的仪器方法有以下几种。 ①串联质谱法(tandem MS),常见的形式有串联(多级)四极杆质谱,四极杆和磁质谱混合式(hybride)串联质谱和采用多个扇形磁铁的串联磁质谱。 ②傅里叶变换质谱(FT—MS),又叫离子回旋共振谱,它利用电离生成的离子在磁场中回旋共振,通过傅里叶变换得到这些离子的质量谱,这种谱仪过去由于电离造成真空降低与回旋共振要求高真空条件相矛盾,性能不能过关。近年来由于分离电离源技术日趋成熟,这种分析方法得到较大发展,它的优点是很容易做到多级串联质谱分析,目前可分析质量范围已达5万左右,分辨力也可达1万。 ③整分子气化和多光子电离技术(LEIM—MUPI),它是在微激光解吸电离技术的发展中最近出现的一种新方法。它把解吸和电离二个环节在时间和空间上分离开来,分别用二个激光器进行解吸和电离。使用红外激光器来实现整分子气化,使用可调谐的紫外激光器对电离过程实行宽范围的能量控制,从而得到从电离(只显示分子离子)到各种程度不同的硬电离质谱,并成功地用于生物大分子的序列分析。

质谱蛋白质组鉴定流程

目的 探讨不同的标本处理和储存条件对蛋白指纹图谱技术检测血清多肽及低分子量蛋白质(1~30 ku)的影响.方法 将血液凝固后马上分离得到的血清分装后分别置于-80 ℃ 6个月以上以及室温、4 ℃条件下2~72 h进行蛋白质质谱分析.结果 血清样本在-80 ℃6个月以上以及4 ℃或者25 ℃保存2 h或者反复冻溶1次,对多肽及低分子量蛋白质的影响相对较小.将血清用U9缓冲液稀释后放置于室温,在24 h内结果稳定.溶血会对蛋白质组的结果造成很大影响.结论 建议血液标本的处理、运送、操作及储存的蛋白质质谱分析的标准条件是:4 ℃下处理血液标本,2 h内尽快分离血清及细胞.用U9缓冲液稀释血清后,可以24 h内在室温下运送或对血清及WCX磁珠结合过程进行操作.血清应分装并长期储存在-80 ℃,但限冻溶1次.溶血标本应弃用,建议重新取血.

给你一张质谱图,你能看出什么?

质谱给出的最重要的信息就是分子量大小

研究蛋白质之间相互作用的实验方法?

白质与蛋白质之间相互作用构成了细胞生化反应网络的一个主要组成部分,蛋白-蛋白互作网络与转录调控网络对调控细胞及其信号有重要意义。把原来spaces空间上的一篇蛋白质与蛋白质间相互作用研究方法转来,算是实验技巧分类目录的首篇。 一、酵母双杂交系统 酵母双杂交系统是当前广泛用于蛋白质相互作用组学研究的一种重要方法。其原理是当靶蛋白和诱饵蛋白特异结合后,诱饵蛋白结合于报道基因的启动子,启动报道基因在酵母细胞内的表达,如果检测到报道基因的表达产物,则说明两者之间有相互作用,反之则两者之间没有相互作用。将这种技术微量化、阵列化后则可用于大规模蛋白质之间相互作用的研究。在实际工作中,人们根据需要发展了单杂交系统、三杂交系统和反向杂交系统等。Angermayr等设计了一个SOS蛋白介导的双杂交系统。可以研究膜蛋白的功能,丰富了酵母双杂交系统的功能。此外,酵母双杂交系统的作用也已扩展至对蛋白质的鉴定。 二、噬茵体展示技术 在编码噬菌体外壳蛋白基因上连接一单克隆抗体的DNA序列,当噬菌体生长时,表面就表达出相应的单抗,再将噬菌体过柱,柱上若含目的蛋白,就会与相应抗体特异性结合,这被称为噬菌体展示技术。此技术也主要用于研究蛋白质之间的相互作用,不仅有高通量及简便的特点,还具有直接得到基因、高选择性的筛选复杂混合物、在筛选过程中通过适当改变条件可以直接评价相互结合的特异性等优点。目前,用优化的噬菌体展示技术,已经展示了人和鼠的两种特殊细胞系的cDNA文库,并分离出了人上皮生长因子信号传导途径中的信号分子。 三、等离子共振技术 表面等离子共振技术(Surface Plasmon Resonance,SPR)已成为蛋白质相互作用研究中的新手段。它的原理是利用一种纳米级的薄膜吸附上“诱饵蛋白”,当待测蛋白与诱饵蛋白结合后,薄膜的共振性质会发生改变,通过检测便可知这两种蛋白的结合情况。SPR技术的优点是不需标记物或染料,反应过程可实时监控。测定快速且安全,还可用于检测蛋白一核酸及其它生物大分子之间的相互作用。 四、荧光能量转移技术 荧光共振能量转移(FRET )广泛用于研究分子间的距离及其相互作用; 与荧光显微镜结合,可定量获取有关生物活体内蛋白质、脂类、DNA 和RNA 的时空信息。随着绿色荧光蛋白(GFP)的发展,FRET 荧光显微镜有可能实时测量活体细胞内分子的动态性质。提出了一种定量测量FRET效率以及供体与受体间距离的简单方法,仅需使用一组滤光片和测量一个比值,利用供体和受体的发射谱消除光谱间的串扰。该方法简单快速,可实时定量测量FRET 的效率和供体与受体间的距离,尤其适用于基于GFP 的供体受体对。 五、抗体与蛋白质阵列技术 蛋白芯片技术的出现给蛋白质组学研究带来新的思路。蛋白质组学研究中一个主要的内容就是研究在不同生理状态下蛋白水平的量变,微型化,集成化,高通量化的抗体芯片就是一个非常好的研究工具,他也是芯片中发展最快的芯片,而且在技术上已经日益成熟。这些抗体芯片有的已经在向临床应用上发展,比如肿瘤标志物抗体芯片等,还有很多已经应用再眼就的各个领域里。 六、免疫共沉淀技术 免疫共沉淀主要是用来研究蛋白质与蛋白质相互作用[/url]的一种技术,其基本原理是,在细胞裂解液中加入抗兴趣蛋白的抗体,孵育后再加入与抗体特异结合的结合于Pansobin珠上的金黄色葡萄球菌蛋白A(SPA),若细胞中有正与兴趣蛋白结合的目的蛋白,就可以形成这样一种复合物:“目的蛋白—兴趣蛋白—抗兴趣蛋白抗体—SPA\|Pansobin”,因为SPA\|Pansobin比较大,这样复合物在离心时就被分离出来。经变性聚丙烯酰胺凝胶电泳,复合物四组分又被分开。然后经Western blotting法,用抗体检测目的蛋白是什么,是否为预测蛋白。这种方法得到的目的蛋白是在细胞内天然与兴趣蛋白结合的,符合体内实际情况,得到的蛋白可信度高。但这种方法有两个缺陷:一是两种蛋白质的结合可能不是直接结合,而可能有第三者在中间起桥梁作用;二是必须在实验前预测目的蛋白是什么,以选择最后检测的抗体,所以,若预测不正确,实验就得不到结果,方法本身具有冒险性。 七、pull-down技术 蛋白质相互作用的类型有牢固型相互作用和暂时型相互作用两种。牢固型相互作用以多亚基蛋白复合体常见,最好通过免疫共沉淀(Co-IP) 、Pull-down技术或Far-western法研究。Pull-down技术用固相化的、已标记的饵蛋白或标签蛋白(生物素-、PolyHis-或GST-),从细胞裂解液中钓出与之相互作用的蛋白。通过Pull-down技术可以确定已知的蛋白与钓出蛋白或已纯化的相关蛋白间的相互作用关系,从体外传路或翻译体系中检测出蛋白相互作用关系。

蛋白质质谱分析具体流程

质谱技术在蛋白质组学中的应用 王海龙杨静祁振国岳秀兰 (包头医学院生物化学与分子生物学教研室,内蒙古包头014010;赤峰市第一医院’) 中图分类号(}so3 文献标识码A 文章编号1006—740X(2006)02—0231一o3 蛋白质组学是后基因组时代的一个新领域,它通 过在蛋白质水平上对细胞或机体基因表达的整体蛋白 质的定量研究,来揭示生命的过程和解释基因表达控 制的机理⋯ 。蛋白质组学分为表达蛋白质组学(Ex· pression Proteomies)和细胞图谱蛋白质组学(Cell Map Pmteomies),前者指细胞和组织表达的蛋白质的定量 图谱,它依赖二维凝胶电泳图谱和图像分析,它能在整 体蛋白质水平上研究细胞的通路,以及疾病、药物和其 它生物**所引起的紊乱,因此它可能发现疾病标志 和阐明生物通路;后者是指通过纯化细胞器或蛋白质 复合物,用质谱鉴定蛋白质组分,确定蛋白质和蛋白质 相互作用的亚细胞位置 】。9O年代以来随着人类基 因组计划的实施,引发了生物信息学(Bioinformaties) 的发展,使蛋白质分析发生了革命性的变化。现在将 高分辨2一维电泳、高灵敏度的生物质谱和快速增长 的蛋白质和DNA数据库三者结合起来,为高通量的蛋 白质组学(High throughout Proteomies)铺平了道路 。 这里主要介绍质谱技术在蛋白质组学中的应用。 收稿日期:2006-03-02 作者简介:王海龙(1951一),男。大学,副教授。 l 质谱技术的发展历史 1.1 质谱的开发历史要追溯到2O世纪初,Thomson 创制的抛物线质谱装置,1919年Aston制成了第一台 速度聚焦型质谱仪,成为了质谱发展史上的里程碑。 最初的质谱仪主要用来测定元素或同位素的**量, 随着离子光学理论的发展,质谱仪不断改进,其应用范 围也在不断扩大,到2O世纪5O年代后期已广泛地应 用于无机化合物和有机化合物的测定。现今质谱分析 的足迹已遍布各个学科的技术领域,在固体物理、冶 金、电子、航天、**能、地球和宇宙化学、生物化学及 生命科学等领域均有着广阔的应用。质谱技术在生命 科学领域的应用更为质谱的发展注入了新的活力,形 成了独特的生物质谱技术。 1.2 基本原理质谱(Mass Spectrometry)是带电原 子、分子或分子碎片按质量的大小顺序排列的图像。 质谱仪是一类能使物质离化成离子并通过适当的电 场、磁场将它们按空间位置、时间先后或者轨道稳定与 否实现质量**离,并检测强度后进行物质分析的仪 器。质谱仪主要由分析系统、电学系统和真空系统组 成 。 用于分析的样品分子在离子源中离化成具有不同 质量的单电荷分子和碎片离子,这些单电荷离子在加 1 J 1 J 1"J 1掩J rL rL r L r L 维普资讯 http://****cqvip**** 232 包头医学院学报 第22卷 速电场中获得相同动能并形成一束离子,进入由电场 和磁场组成的分析器,离子束中速度较慢的离子通过 电场后偏转大,速度快的偏转小;在磁场中离子发生角 速度矢量相反的偏转,即速度慢的离子依然偏转大,速 度快的偏转小;当两个场的偏转作用彼此补偿时,它们 的轨道便相交于一点。与此同时,在磁场中还能发生 质量的分离,这样就使具有同一质量比而速度不同的 离子聚焦在同一点上,不同质量比的离子聚焦在不同 的点上,其焦面接近于平面,在此处用检测系统进行检 测即可得到不同质量比的谱线,即质谱。通过质谱分 析,我们可以获得分析样品的分子量、分子式、分子中 同位素构成和分子结构等多方面的信息 J。 2 质谱技术种类 2.1 电喷雾质谱技术(Electrospray ionization Mass Spectrometry,ESI—MS) 是在毛细管的出口处施加一 高电压,所产生的高电场使从毛细管流出的液体雾化 成细小的带电液滴,随着溶剂蒸发,液滴表面的电荷强 度逐渐增大,最后液滴崩解为大量带一个或多个电荷 的离子,致使分析物以单电荷或多电荷离子的形式进 入气相⋯ 。电喷雾离子化的特点是产生高电荷离子 而不是碎片离子,使质量电荷比降低到多数质量分析 仪器都可以检测的范围,因而大大扩展了分子量的分 析范围,离子的真实分子质量也可以根据质荷比及电 荷数算出。电喷雾质谱的优势就是它可以方便地与多 种分离技术联合使用 j。 2.2 基质辅助激光解吸附质谱技术(Matrix Assisted Laser Desorption/Ionization,MALDI) 基本原理是将 分析物分散在基质分子中并形成晶体,当用激光照射 晶体时由于基质分子经辐射所吸收的能量,导致能量 蓄积并迅速产热,从而使基质晶体升华,致使基质和分 析物膨胀并进入气相。MALDI所产生的质谱图多为 单电荷离子,因而质谱图中的离子与多肽和蛋白质的 质量有一一对应关系。MALDI产生的离子常用飞行 时间检测器来检测,理论上讲,只要飞行管的长度足 够,检测器可检测分子的质量数是没有上限的,因此质 谱很合适对蛋白质、多肽、核酸和多糖等大分子的研 究。 2.3 快**轰击质谱技术(Fast Atom Bomebardment Mass Spectrometry,FABMS) 一种软电离技术,是用快 速隋性**射击存在于底物中的样品,使样品离子溅 出进入分析器,这种软电离技术适于极性强、热不稳定 的化合物的分析,特别适于多肽和蛋白质的分析研究。 FABMS只能提供有关离子的精确质量,从而可以确定 样品的元素组成和分子式。而FABMS—MS串联技术 的应用可以提供样品较为详细的分子结构信息,从而 使其在生物医学分析中迅速发展起来 ]。 2.4 同位素质谱技术是一种开发和应用比较早的 技术,被广泛地应用于各个领域,但它在医学领域的应 用只是近近几年的事。由于某些病原菌具有分解特定 化合物的能力,该化合物又易于用同位素标示,人们就 想到用同位素质谱的方法检测其代谢物中同位素的含 量以达到检测该病原菌的目的,同时也为同位素质谱 在医学领域的应用开辟了一条思路。 3 电泳分离后凝胶上蛋白质的质谱鉴定 电泳分离后凝胶上的蛋白质,先用适当的蛋白内 切酶酶切成肽段,再用质谱鉴定。现有四种制样方法: 3.1 凝胶内酶切凝胶内酶切的灵敏度高,是当前广 泛采用的样品制备方法。最常用的蛋白内切酶是胰蛋 白酶。它在蛋白质主链精氨酸和赖氨酸的C一端进行 切割。文献中有多种凝胶内酶切的方法,这里介绍改 进后的Wilm的方法。 将电泳后凝胶上的蛋白质斑点以最小的体积切 下,并将凝胶块切成约lmm 小颗粒,转入小离心管 内,加入约5O 的lOOmmol/L碳酸氢铵溶液洗胶粒 5min,弃去碳酸氢铵液,加入50pJ乙腈使凝胶脱水1O 一15min。若胶粒未完全脱水再用乙腈脱水~次,弃去 乙腈液。将离心管置入真空离心蒸发浓缩器内,微加 热15rain使胶粒完全干燥。将50pJ新鲜配制的 10mmoVL DTY韵100mmol/L碳酸氢铵溶液加入离心 管内,使胶粒水化。在56℃加热30rain还原样品,弃 去DTr溶液,加入乙腈放置15min,再在Speed Vac微 加热干燥15rain,加入5O l 55mmol/L碘乙酰胺的 100mmol/L碳酸氢铵溶液,烷基化半胱氨酸残基上的 巯基。室温暗室中放置20 min,弃去上清夜,加入 50pJ乙腈放置15min,在Speed Vac内干燥。加入2O l 胰蛋白酶溶液在4℃放置45—60min使胶粒再水化, 加入1O一2o 碳酸氢铵溶液覆盖胶粒,37cI=保温1小 时后,放置过夜,所得溶液供质谱分析用。 3.2 电洗脱后在溶液中酶解 电洗脱是电泳后从凝 胶上回收蛋白质的经典方法。通常蛋白质量多于0. O01 mmol。将含SDS的凝胶与MALDI TOF MS分析结 合,可分析亚mmol的蛋白质。Schuh macher等用无 SDS pH2.5的乙酸铵作洗脱缓冲液,电洗脱系统的极 性相反,蛋白质SDS复合物在原位解离,游离的蛋白 质迁移至阴极,用标准蛋白样品实验,回收率达25% ~ 56% [引 。 3.3 膜上酶切膜上酶切的方法已不常用于质谱分 析,因为它的灵敏度低于凝胶内酶切。电转移时不是 维普资讯 http://****cqvip**** 第2期 王海龙,等.质谱技术在蛋白质组学中的应用 233 所有的蛋白质都能有效转移,而且在印迹过程中蛋白 质可能丢失。另外从PVDF膜上提取酶切后多肽时效 率不高,提取时加Triton 100可以增加多肽的提取效 率,但去污剂干扰质谱鉴定 J。 3.4 印迹过程中酶切 1999年Bins等报道将固定有 胰蛋白酶的膜,置于凝胶和PVDF膜之间在印迹过程 中使蛋白质样品发生酶切,为了蛋白质完全酶切,印迹 过程需要特殊设计。印迹后的膜用基体溶液浸透后可 用MALDI TOF MS直接分析。该法的主要特点是印迹 过程中平行进行酶切,其灵敏度不如标准方法 J。 4 用肽质量指纹谱鉴定蛋白质 蛋白质组学中最有意义的突破是用生物质谱鉴定 电泳后凝胶上的蛋白质。质谱技术已取代了生物化学 中经典的Edman降解技术¨。。,这是由于质谱技术能 进行高通量的分析,能分析蛋白质混合物,而且灵敏。 肽质量指纹谱方法最初由Henzel及其同事提 出¨ ,很快成为高通量蛋白质鉴定的选用方法。分析 时用MALDI TOF MS测定凝胶内酶切后多肽混合物的 质量,获得肽质量指纹图谱。蛋白质酶切后生成多肽 混合物,可以在蛋白质序列数据库内进行理论预测,并 对质谱实测多肽混合物与理论预测的数据进行比较, 质谱实测到足够肽段的质量与数据库中一个蛋白质理 论预测肽段质量匹配,蛋白质可明确鉴定_1 。 随着科学技术的进步,质谱也得到了快速发展,特 别是与生物技术的结合,开创了质谱应用的新领域。 质谱已成为生命科学研究中非常重要的工具。其研究 成果也将大大推动人类基因组的研究,并将使人类对 生命的本质,其发生发展过程的认识达到一个前所未 有新高度。 参考文献 [1] 钱小红,盛龙生.生物质谱技术与方法[M].北京:科学 出版社,2003:17. [2] B.N帕拉马克尼.电喷雾质谱应用技术[M].北京:化学 工业出版社,2005:215. [3] 利布来尔.蛋白质组学导论[M].北京:科学出版社。 2005:163. [4] 桑志红.电喷雾电离质谱及其在蛋白质化学研究中的应 用[J].国外医学.药学分册,2000,27(1):38. [5] Miller GM,Byrd SE,Kuznieky RI.Nature Insight:Funetional Genomies[J].Nature,2000,405:819. [6] 张学敏,魏开华,杨松成.生物质谱和蛋白质组技术的应 用策略[J].分析测试学报,2002,21(增):9. [7] Weaver RF.Molecular Biology[M].Columbus:McGraw— Hil1.2001:231. [8] 魏开华,杨松成.转印到膜上的蛋白质的质谱分析[J].质 谱学报,2004:20(3):89. [9] 夏家辉.医学遗传学[M].北京:人民卫生出版社,2004: 241. [10] Benfey PN,Protopapas AD.Genomies[M].New Jersey: Prenties Hall。2004:202. [11] 冯作化.医学分子生物学[M].北京:人民卫生出版社, 2001:189. [12] 查锡良.医学分子生物学[M]。北京:人民卫生出版社, 2003:263.

宝贝快好(www.bbwell.cn)推荐其他用户看过的宠物知识:

仓鼠能吃西瓜子吗?

和宝莲灯鱼混养用什么工具鱼

板栗怎样泡酒?

主人不在家猫会一直叫吗

餐桌上面选择的吊灯,什么样式的比较好?

泰迪生下来几天断尾?怎么断?

火车托运20斤金毛多钱

什么是精神抚慰犬

什么的什么 句子

说是布偶猫比较娇气,第一次养猫,养这个品种能行吗?

怎样正确喂养金毛

如何美甲绘画呢?

蛋白质质谱分析具体流程

质谱技术在蛋白质组学中的应用 王海龙杨静祁振国岳秀兰 (包头医学院生物化学与分子生物学教研室,内蒙古包头014010;赤峰市第一医院’) 中图分类号(}so3 文献标识码A 文章编号1006—740X(2006)02—0231一o3 蛋白质组学是后基因组时代的一个新领域,它通 过在蛋白质水平上对细胞或机体基因表达的整体蛋白 质的定量研究,来揭示生命的过程和解释基因表达控 制的机理⋯ 。蛋白质组学分为表达蛋白质组学(Ex· pression Proteomies)和细胞图谱蛋白质组学(Cell Map Pmteomies),前者指细胞和组织表达的蛋白质的定量 图谱,它依赖二维凝胶电泳图谱和图像分析,它能在整 体蛋白质水平上研究细胞的通路,以及疾病、药物和其 它生物**所引起的紊乱,因此它可能发现疾病标志 和阐明生物通路;后者是指通过纯化细胞器或蛋白质 复合物,用质谱鉴定蛋白质组分,确定蛋白质和蛋白质 相互作用的亚细胞位置 】。9O年代以来随着人类基 因组计划的实施,引发了生物信息学(Bioinformaties) 的发展,使蛋白质分析发生了革命性的变化。现在将 高分辨2一维电泳、高灵敏度的生物质谱和快速增长 的蛋白质和DNA数据库三者结合起来,为高通量的蛋 白质组学(High throughout Proteomies)铺平了道路 。 这里主要介绍质谱技术在蛋白质组学中的应用。 收稿日期:2006-03-02 作者简介:王海龙(1951一),男。大学,副教授。 l 质谱技术的发展历史 1.1 质谱的开发历史要追溯到2O世纪初,Thomson 创制的抛物线质谱装置,1919年Aston制成了第一台 速度聚焦型质谱仪,成为了质谱发展史上的里程碑。 最初的质谱仪主要用来测定元素或同位素的**量, 随着离子光学理论的发展,质谱仪不断改进,其应用范 围也在不断扩大,到2O世纪5O年代后期已广泛地应 用于无机化合物和有机化合物的测定。现今质谱分析 的足迹已遍布各个学科的技术领域,在固体物理、冶 金、电子、航天、**能、地球和宇宙化学、生物化学及 生命科学等领域均有着广阔的应用。质谱技术在生命 科学领域的应用更为质谱的发展注入了新的活力,形 成了独特的生物质谱技术。 1.2 基本原理质谱(Mass Spectrometry)是带电原 子、分子或分子碎片按质量的大小顺序排列的图像。 质谱仪是一类能使物质离化成离子并通过适当的电 场、磁场将它们按空间位置、时间先后或者轨道稳定与 否实现质量**离,并检测强度后进行物质分析的仪 器。质谱仪主要由分析系统、电学系统和真空系统组 成 。 用于分析的样品分子在离子源中离化成具有不同 质量的单电荷分子和碎片离子,这些单电荷离子在加 1 J 1 J 1"J 1掩J rL rL r L r L 维普资讯 http://****cqvip**** 232 包头医学院学报 第22卷 速电场中获得相同动能并形成一束离子,进入由电场 和磁场组成的分析器,离子束中速度较慢的离子通过 电场后偏转大,速度快的偏转小;在磁场中离子发生角 速度矢量相反的偏转,即速度慢的离子依然偏转大,速 度快的偏转小;当两个场的偏转作用彼此补偿时,它们 的轨道便相交于一点。与此同时,在磁场中还能发生 质量的分离,这样就使具有同一质量比而速度不同的 离子聚焦在同一点上,不同质量比的离子聚焦在不同 的点上,其焦面接近于平面,在此处用检测系统进行检 测即可得到不同质量比的谱线,即质谱。通过质谱分 析,我们可以获得分析样品的分子量、分子式、分子中 同位素构成和分子结构等多方面的信息 J。 2 质谱技术种类 2.1 电喷雾质谱技术(Electrospray ionization Mass Spectrometry,ESI—MS) 是在毛细管的出口处施加一 高电压,所产生的高电场使从毛细管流出的液体雾化 成细小的带电液滴,随着溶剂蒸发,液滴表面的电荷强 度逐渐增大,最后液滴崩解为大量带一个或多个电荷 的离子,致使分析物以单电荷或多电荷离子的形式进 入气相⋯ 。电喷雾离子化的特点是产生高电荷离子 而不是碎片离子,使质量电荷比降低到多数质量分析 仪器都可以检测的范围,因而大大扩展了分子量的分 析范围,离子的真实分子质量也可以根据质荷比及电 荷数算出。电喷雾质谱的优势就是它可以方便地与多 种分离技术联合使用 j。 2.2 基质辅助激光解吸附质谱技术(Matrix Assisted Laser Desorption/Ionization,MALDI) 基本原理是将 分析物分散在基质分子中并形成晶体,当用激光照射 晶体时由于基质分子经辐射所吸收的能量,导致能量 蓄积并迅速产热,从而使基质晶体升华,致使基质和分 析物膨胀并进入气相。MALDI所产生的质谱图多为 单电荷离子,因而质谱图中的离子与多肽和蛋白质的 质量有一一对应关系。MALDI产生的离子常用飞行 时间检测器来检测,理论上讲,只要飞行管的长度足 够,检测器可检测分子的质量数是没有上限的,因此质 谱很合适对蛋白质、多肽、核酸和多糖等大分子的研 究。 2.3 快**轰击质谱技术(Fast Atom Bomebardment Mass Spectrometry,FABMS) 一种软电离技术,是用快 速隋性**射击存在于底物中的样品,使样品离子溅 出进入分析器,这种软电离技术适于极性强、热不稳定 的化合物的分析,特别适于多肽和蛋白质的分析研究。 FABMS只能提供有关离子的精确质量,从而可以确定 样品的元素组成和分子式。而FABMS—MS串联技术 的应用可以提供样品较为详细的分子结构信息,从而 使其在生物医学分析中迅速发展起来 ]。 2.4 同位素质谱技术是一种开发和应用比较早的 技术,被广泛地应用于各个领域,但它在医学领域的应 用只是近近几年的事。由于某些病原菌具有分解特定 化合物的能力,该化合物又易于用同位素标示,人们就 想到用同位素质谱的方法检测其代谢物中同位素的含 量以达到检测该病原菌的目的,同时也为同位素质谱 在医学领域的应用开辟了一条思路。 3 电泳分离后凝胶上蛋白质的质谱鉴定 电泳分离后凝胶上的蛋白质,先用适当的蛋白内 切酶酶切成肽段,再用质谱鉴定。现有四种制样方法: 3.1 凝胶内酶切凝胶内酶切的灵敏度高,是当前广 泛采用的样品制备方法。最常用的蛋白内切酶是胰蛋 白酶。它在蛋白质主链精氨酸和赖氨酸的C一端进行 切割。文献中有多种凝胶内酶切的方法,这里介绍改 进后的Wilm的方法。 将电泳后凝胶上的蛋白质斑点以最小的体积切 下,并将凝胶块切成约lmm 小颗粒,转入小离心管 内,加入约5O 的lOOmmol/L碳酸氢铵溶液洗胶粒 5min,弃去碳酸氢铵液,加入50pJ乙腈使凝胶脱水1O 一15min。若胶粒未完全脱水再用乙腈脱水~次,弃去 乙腈液。将离心管置入真空离心蒸发浓缩器内,微加 热15rain使胶粒完全干燥。将50pJ新鲜配制的 10mmoVL DTY韵100mmol/L碳酸氢铵溶液加入离心 管内,使胶粒水化。在56℃加热30rain还原样品,弃 去DTr溶液,加入乙腈放置15min,再在Speed Vac微 加热干燥15rain,加入5O l 55mmol/L碘乙酰胺的 100mmol/L碳酸氢铵溶液,烷基化半胱氨酸残基上的 巯基。室温暗室中放置20 min,弃去上清夜,加入 50pJ乙腈放置15min,在Speed Vac内干燥。加入2O l 胰蛋白酶溶液在4℃放置45—60min使胶粒再水化, 加入1O一2o 碳酸氢铵溶液覆盖胶粒,37cI=保温1小 时后,放置过夜,所得溶液供质谱分析用。 3.2 电洗脱后在溶液中酶解 电洗脱是电泳后从凝 胶上回收蛋白质的经典方法。通常蛋白质量多于0. O01 mmol。将含SDS的凝胶与MALDI TOF MS分析结 合,可分析亚mmol的蛋白质。Schuh macher等用无 SDS pH2.5的乙酸铵作洗脱缓冲液,电洗脱系统的极 性相反,蛋白质SDS复合物在原位解离,游离的蛋白 质迁移至阴极,用标准蛋白样品实验,回收率达25% ~ 56% [引 。 3.3 膜上酶切膜上酶切的方法已不常用于质谱分 析,因为它的灵敏度低于凝胶内酶切。电转移时不是 维普资讯 http://****cqvip**** 第2期 王海龙,等.质谱技术在蛋白质组学中的应用 233 所有的蛋白质都能有效转移,而且在印迹过程中蛋白 质可能丢失。另外从PVDF膜上提取酶切后多肽时效 率不高,提取时加Triton 100可以增加多肽的提取效 率,但去污剂干扰质谱鉴定 J。 3.4 印迹过程中酶切 1999年Bins等报道将固定有 胰蛋白酶的膜,置于凝胶和PVDF膜之间在印迹过程 中使蛋白质样品发生酶切,为了蛋白质完全酶切,印迹 过程需要特殊设计。印迹后的膜用基体溶液浸透后可 用MALDI TOF MS直接分析。该法的主要特点是印迹 过程中平行进行酶切,其灵敏度不如标准方法 J。 4 用肽质量指纹谱鉴定蛋白质 蛋白质组学中最有意义的突破是用生物质谱鉴定 电泳后凝胶上的蛋白质。质谱技术已取代了生物化学 中经典的Edman降解技术¨。。,这是由于质谱技术能 进行高通量的分析,能分析蛋白质混合物,而且灵敏。 肽质量指纹谱方法最初由Henzel及其同事提 出¨ ,很快成为高通量蛋白质鉴定的选用方法。分析 时用MALDI TOF MS测定凝胶内酶切后多肽混合物的 质量,获得肽质量指纹图谱。蛋白质酶切后生成多肽 混合物,可以在蛋白质序列数据库内进行理论预测,并 对质谱实测多肽混合物与理论预测的数据进行比较, 质谱实测到足够肽段的质量与数据库中一个蛋白质理 论预测肽段质量匹配,蛋白质可明确鉴定_1 。 随着科学技术的进步,质谱也得到了快速发展,特 别是与生物技术的结合,开创了质谱应用的新领域。 质谱已成为生命科学研究中非常重要的工具。其研究 成果也将大大推动人类基因组的研究,并将使人类对 生命的本质,其发生发展过程的认识达到一个前所未 有新高度。 参考文献 [1] 钱小红,盛龙生.生物质谱技术与方法[M].北京:科学 出版社,2003:17. [2] B.N帕拉马克尼.电喷雾质谱应用技术[M].北京:化学 工业出版社,2005:215. [3] 利布来尔.蛋白质组学导论[M].北京:科学出版社。 2005:163. [4] 桑志红.电喷雾电离质谱及其在蛋白质化学研究中的应 用[J].国外医学.药学分册,2000,27(1):38. [5] Miller GM,Byrd SE,Kuznieky RI.Nature Insight:Funetional Genomies[J].Nature,2000,405:819. [6] 张学敏,魏开华,杨松成.生物质谱和蛋白质组技术的应 用策略[J].分析测试学报,2002,21(增):9. [7] Weaver RF.Molecular Biology[M].Columbus:McGraw— Hil1.2001:231. [8] 魏开华,杨松成.转印到膜上的蛋白质的质谱分析[J].质 谱学报,2004:20(3):89. [9] 夏家辉.医学遗传学[M].北京:人民卫生出版社,2004: 241. [10] Benfey PN,Protopapas AD.Genomies[M].New Jersey: Prenties Hall。2004:202. [11] 冯作化.医学分子生物学[M].北京:人民卫生出版社, 2001:189. [12] 查锡良.医学分子生物学[M]。北京:人民卫生出版社, 2003:263.

研究蛋白质相互作用的意义是什么?如何能够分离到细胞内的多蛋白复合体。(需要很详细或者直接指出出处)

蛋 白质与蛋白质之间相互作用构成了细胞生化反应网络的一个主要组成部分,蛋白-蛋白互作网络与转录调控网络对调控细胞及其信号有重要意义。把原来spaces空间上的一篇蛋白质与蛋白质间相互作用研究方法转来,算是实验技巧分类目录的首篇。 一、酵母双杂交系统 酵母双杂交系统是当前广泛用于蛋白质相互作用组学研究的一种重要方法。其原理是当靶蛋白和诱饵蛋白特异结合后,诱饵蛋白结合于报道基因的启动子,启动报道基因在酵母细胞内的表达,如果检测到报道基因的表达产物,则说明两者之间有相互作用,反之则两者之间没有相互作用。将这种技术微量化、阵列化后则可用于大规模蛋白质之间相互作用的研究。在实际工作中,人们根据需要发展了单杂交系统、三杂交系统和反向杂交系统等。Angermayr等设计了一个SOS蛋白介导的双杂交系统。可以研究膜蛋白的功能,丰富了酵母双杂交系统的功能。此外,酵母双杂交系统的作用也已扩展至对蛋白质的鉴定。 二、噬茵体展示技术 在编码噬菌体外壳蛋白基因上连接一单克隆抗体的DNA序列,当噬菌体生长时,表面就表达出相应的单抗,再将噬菌体过柱,柱上若含目的蛋白,就会与相应抗体特异性结合,这被称为噬菌体展示技术。此技术也主要用于研究蛋白质之间的相互作用,不仅有高通量及简便的特点,还具有直接得到基因、高选择性的筛选复杂混合物、在筛选过程中通过适当改变条件可以直接评价相互结合的特异性等优点。目前,用优化的噬菌体展示技术,已经展示了人和鼠的两种特殊细胞系的cDNA文库,并分离出了人上皮生长因子信号传导途径中的信号分子。 三、等离子共振技术 表面等离子共振技术(Surface Plasmon Resonance,SPR)已成为蛋白质相互作用研究中的新手段。它的原理是利用一种纳米级的薄膜吸附上“诱饵蛋白”,当待测蛋白与诱饵蛋白结合后,薄膜的共振性质会发生改变,通过检测便可知这两种蛋白的结合情况。SPR技术的优点是不需标记物或染料,反应过程可实时监控。测定快速且安全,还可用于检测蛋白一核酸及其它生物大分子之间的相互作用。 四、荧光能量转移技术 荧光共振能量转移(FRET )广泛用于研究分子间的距离及其相互作用; 与荧光显微镜结合,可定量获取有关生物活体内蛋白质、脂类、DNA 和RNA 的时空信息。随着绿色荧光蛋白(GFP)的发展,FRET 荧光显微镜有可能实时测量活体细胞内分子的动态性质。提出了一种定量测量FRET效率以及供体与受体间距离的简单方法,仅需使用一组滤光片和测量一个比值,利用供体和受体的发射谱消除光谱间的串扰。该方法简单快速,可实时定量测量FRET 的效率和供体与受体间的距离,尤其适用于基于GFP 的供体受体对。 五、抗体与蛋白质阵列技术 蛋白芯片技术的出现给蛋白质组学研究带来新的思路。蛋白质组学研究中一个主要的内容就是研究在不同生理状态下蛋白水平的量变,微型化,集成化,高通量化的抗体芯片就是一个非常好的研究工具,他也是芯片中发展最快的芯片,而且在技术上已经日益成熟。这些抗体芯片有的已经在向临床应用上发展,比如肿瘤标志物抗体芯片等,还有很多已经应用再眼就的各个领域里。 六、免疫共沉淀技术 免疫共沉淀主要是用来研究蛋白质与蛋白质相互作用[/url]的一种技术,其基本原理是,在细胞裂解液中加入抗兴趣蛋白的抗体,孵育后再加入与抗体特异结合的结合于Pansobin珠上的金黄色葡萄球菌蛋白A(SPA),若细胞中有正与兴趣蛋白结合的目的蛋白,就可以形成这样一种复合物:“目的蛋白—兴趣蛋白—抗兴趣蛋白抗体—SPA\|Pansobin”,因为SPA\|Pansobin比较大,这样复合物在离心时就被分离出来。经变性聚丙烯酰胺凝胶电泳,复合物四组分又被分开。然后经Western blotting法,用抗体检测目的蛋白是什么,是否为预测蛋白。这种方法得到的目的蛋白是在细胞内天然与兴趣蛋白结合的,符合体内实际情况,得到的蛋白可信度高。但这种方法有两个缺陷:一是两种蛋白质的结合可能不是直接结合,而可能有第三者在中间起桥梁作用;二是必须在实验前预测目的蛋白是什么,以选择最后检测的抗体,所以,若预测不正确,实验就得不到结果,方法本身具有冒险性。 七、pull-down技术 蛋白质相互作用的类型有牢固型相互作用和暂时型相互作用两种。牢固型相互作用以多亚基蛋白复合体常见,最好通过免疫共沉淀(Co-IP) 、Pull-down技术或Far-western法研究。Pull-down技术用固相化的、已标记的饵蛋白或标签蛋白(生物素-、PolyHis-或GST-),从细胞裂解液中钓出与之相互作用的蛋白。通过Pull-down技术可以确定已知的蛋白与钓出蛋白或已纯化的相关蛋白间的相互作用关系,从体外传路或翻译体系中检测出蛋白相互作用关系。

在**核中,哪些核具有核磁共振现象

**核的核自旋量子数不为零(元素周期表中的大部分元素都满足该条件)。 核磁共振是磁矩不为零的**核,在外磁场作用下自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核塞曼能级上的跃迁。 扩展资料 核磁共振,这里的“核”可不是日本福岛核电站泄漏出来的那个“核”,它其实是氢**核,人体约 70% 由水组成,水中有大量的氢**且遍布全身。 氢**在强磁场内受到电磁波脉冲的激发,产生核磁共振现象,将核磁共振信号通过计算机进行数据处理转换转化成图像,以做诊断。 由此可见,MRI 是磁场成像,而不是 X 射线,没有放射性,所以对人体无害,是非常安全的,不必谈核色变。世界上还没有任何关于核磁共振对人体引起危害的报道。 参考资料来源:百度百科-核磁共振

 

声明:本文图片、文字、视频等内容来源于互联网,本站无法甄别其准确性,建议谨慎参考,本站不对您因参考本文所带来的任何后果负责!本站尊重并保护知识产权,本文版权归原作者所有,根据《信息网络传播权保护条例》,如果我们转载内容侵犯了您的权利,请及时与我们联系,我们会做删除处理,谢谢。

 

相关内容

宝贝快好(www.bbwell.cn)是领先的宠物健康网站,作为宠物健康知识大百科,免费提供猫咪和狗狗疾病预防常识及常见病治疗及预防方法,养猫养狗的好处坏处和注意事项,是你身边24小时在线的宠物专家,百万网友免费在线咨询提问。