宝贝快好(www.bbwell.cn)宠物健康知识百科,为您免费提供养猫养狗的好处坏处和注意事项、在线咨询。

微信
手机版
黑色皮肤 蓝色皮肤

什么是拓扑学,什么是拓扑学?

2023-01-31 17:54:07 宝贝快好 宠物大全 来源:互联网

 

什么是拓扑学,什么是拓扑学?:今天宝贝快好宠物网给各位分享拓扑群作用的知识,其中也会对什么是拓扑学(什么是拓扑学?)进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!……宝贝快好www.bbwell.cn)小编为你整理了本篇文章,希望能解对你有所帮助!

 

今天宝贝快好宠物网给各位分享拓扑群作用的知识,其中也会对什么是拓扑学(什么是拓扑学?)进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!

什么是拓扑学

拓扑学 拓扑学,是近代发展起来的一个研究连续性现象的数学分支。中文名称起源于希腊语Τοπολογία的音译。Topology原意为地貌,于19世纪中期由科学家引入,当时主要研究的是出于数学分析的需要而产生的一些几何问题。发展至今,拓扑学主要研究拓扑空间在拓扑变换下的不变性质和不变量。 拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。我国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的。 拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。 举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,前面讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。这些就是拓扑学思考问题的出发点。 拓扑性质有那些呢?首先我们介绍拓扑等价,这是比较容易理解的一个拓扑性质。 在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,尽管圆和方形、三角形的形状、大小不同,在拓扑变换下,它们都是等价图形。左图的三样东西就是拓扑等价的,换句话讲,就是从拓扑学的角度看,它们是完全一样的。 在一个球面上任选一些点用不相交的线把它们连接起来,这样球面就被这些线分成许多块。在拓扑变换下,点、线、块的数目仍和原来的数目一样,这就是拓扑等价。一般地说,对于任意形状的闭曲面,只要不把曲面撕裂或割破,他的变换就是拓扑变幻,就存在拓扑等价。 应该指出,环面不具有这个性质。比如像左图那样,把环面切开,它不至于分成许多块,只是变成一个弯曲的圆桶形,对于这种情况,我们就说球面不能拓扑的变成环面。所以球面和环面在拓扑学中是不同的曲面。 直线上的点和线的结合关系、顺序关系,在拓扑变换下不变,这是拓扑性质。在拓扑学中曲线和曲面的闭合性质也是拓扑性质。 拓扑学是数学中一个重要的、基础的分支。起初它是几何学的一支,研究几何图形在连续变形下保持不变的性质(所谓连续变形,形象地说就是允许伸缩和扭曲等变形,但不许割断和粘合);现在已发展成为研究连续性现象的数学分支。由于连续性在数学中的表现方式与研究方法的多样性,拓扑学又分成研究对象与方法各异的若干分支。在拓扑学的孕育阶段,19世纪末,就拓扑已出现点集拓扑学与组合拓扑学两个方向。现在,前者演化为一般拓扑学,后者则成为代数拓扑学。后来,又相继出现了微分拓朴学、几何拓扑学等分支。 在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。

"拓扑"是什么意思?

拓扑是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的一个学科。它只考虑物体间的位置关系而不考虑它们的形状和大小。 拓扑英文名是Topology,直译是地志学,最早指研究地形、地貌相类似的有关学科。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现的一些孤立的问题,在后来的拓扑学的形成中占着重要的地位。 扩展资料 例子 1、欧几里德空间在通常开集的意义下是拓扑空间,它的拓扑就是所有开集组成的集合。 2、设X是一个非空集合。则集合t:{X,{}}是X的一个拓扑。称t为X的平凡拓扑。显然(X,t)只有两个开集,X和{}。 3、设X是一个非空集合。则X的幂集T=2^X也是X的一个拓扑。称T为X的离散拓扑。显然X的任意子集都是(X,T)的开集。 4、一个具体的例子。设X={1,2}。则{X,{},{1}}是X的一个拓扑,{X,{},{2}}也是拓扑,{X,{},{1},{2}}是拓扑(由定义可知)。

拓扑学在物理研究中有哪些具体应用

(我目前学得还不是太深) 电磁学里,对于复杂电路电阻的计算,会用到一些浅显的拓扑学知识 在利用基尔霍夫方程组解复杂电路的时候,由网络拓扑学可知,对于P条支路,N个节点,M个回路,有: p=m+n-1 很浅显的应用

拓扑学和泛函分析哪个好学,有用,研究方向是什么

感觉拓扑学容易些,泛函分析完全是在听天书 ,量子力学这种玄幻的东西可不是盖的,不过要修这几门的话数学分析一定要过硬 拓扑学主要是应用在运筹学中的理论,图论,线性规划,排队论,决策等等;而泛函分析则主要是应用在电子,通信等领域。如果是学经济学的,建议学拓扑学。 拓扑学是研究几何图形在连续改变形状时还能保持不变的一些特性,它只考虑物体间的位置关系而不考虑它们的距离和大小。简单地说,拓扑就是研究有形的物体在连续变换下,怎样还能保持性质不变。 泛函分析主要是研究由函数构成的空间(如巴拿赫空间,希尔伯特空间),量子力学的一个数学基础,需要很好的分析学基础。 希望对你有帮助

“拓扑”是什么意思?

宝贝快好(www.bbwell.cn)推荐其他用户看过的宠物知识:

阿拉斯加犬剃完毛怎么不怎么长了

我家狗狗昨天在小区里走丢了,是只很可爱的泰迪犬,平常他自己在外面玩不久就会来了,可这次...它能回来吗

金毛狗狗太胖了怎么办?

澳大利亚丝毛梗的外形特征

萨摩耶拉屎很臭怎么办?

耳朵流脓流水怎么回事

未绝育的公猫可以养在一起吗 未绝育的公猫养一起有事吗

中华田园犬掉毛厉害吗

阿拉斯加雪橇犬的性格如何?

贵宾犬身体太瘦怎么办,怎么让它长胖点?

给猫剪毛,不小心剪掉拇指大一块皮,没流血,不知道会不会感染啊?

猫吃奶油会怎么样

研究网络拓扑结构的作用和意义

网络拓扑结构 星型拓扑结构  网络拓扑结构是指用传输媒体互连各种设备的物理布局,就是用什么方式把网络中的计算机等设备连接起来。拓扑图给出网络服务器、工作站的网络配置和相互间的连接,它的结构主要有星型结构、环型结构、总线结构、分布式结构、树型结构、网状结构、蜂窝状结构等。   星型拓扑结构   星型结构是最古老的一种连接方式,大家每天都使用的电话属于这种结构。星型结构是指各工作站以星型方式连接成网。网络有**节点,其他节点(工作站、服务器)都与**节点直接相连,这种结构以**节点为中心,因此又称为集中式网络。   这种结构便于集中控制,因为端用户之间的通信必须经过中心站。由于这一特点,也带来了易于维护和安全等优点。端用户设备因为故障而停机时也不会影响其它端用户间的通信。同时它的网络延迟时间较小,传输误差较低。但这种结构非常不利的一点是,中心系统必须具有极高的可靠性,因为中心系统一旦损坏,整个系统便趋于瘫痪。对此中心系统通常采用双机热备份,以提高系统的可靠性。   适用场合:局域网、广域网。   环型网络拓扑结构   环型结构在LAN中使用较多。这种结构中的传输媒体从一个端用户到另一个端用户,直到将所有的端用户连成环型。数据在环路中沿着一个方向在各个节点间传输,信息从一个节点传到另一个节点。这种结构显而易见消除了端用户通信时对中心系统的依赖性。   环行结构的特点是:每个端用户都与两个相临的端用户相连,因而存在着点到点链路,但总是以单向方式操作,于是便有上游端用户和下游端用户之称;信息流在网中是沿着固定方向流动的,两个节点仅有一条道路,故简化了路径选择的控制;环路上各节点都是自举控制,故控制软件简单;由于信息源在环路中是串行地穿过各个节点,当环中节点过多时,势必影响信息传输速率,使网络的响应时间延长;环路是封闭的,不便于扩充;可靠性低,一个节点故障,将会造成全网瘫痪;维护难,对分支节点故障定位较难。   适用场合:局域网,实时性要求较高的环境。   总线拓扑结构    总线拓扑结构   总线结构是使用同一媒体或电缆连接所有端用户的一种方式,也就是说,连接端用户的物理媒体由所有设备共享,各工作站地位平等,无中心节点控制,公用总线上的信息多以基带形式串行传递,其传递方向总是从发送信息的节点开始向两端扩散,如同广播电台发射的信息一样,因此又称广播式计算机网络。各节点在接受信息时都进行地址检查,看是否与自己的工作站地址相符,相符则接收网上的信息。   使用这种结构必须解决的一个问题是确保端用户使用媒体发送数据时不能出现冲突。在点到点链路配置时,这是相当简单的。如果这条链路是半双工操作,只需使用很简单的机制便可保证两个端用户轮流工作。在一点到多点方式中,对线路的访问依靠控制端的探询来确定。然而,在LAN环境下,由于所有数据站都是平等的,不能采取上述机制。对此,研究了一种在总线共享型网络使用的媒体访问方法:带有碰撞检测的载波侦听多路访问,英文缩写成CSMA/CD。   这种结构具有费用低、数据端用户入网灵活、站点或某个端用户失效不影响其它站点或端用户通信的优点。缺点是一次仅能一个端用户发送数据,其它端用户必须等待到获得发送权;媒体访问获取机制较复杂;维护难,分支节点故障查找难。尽管有上述一些缺点,但由于布线要求简单,扩充容易,端用户失效、增删不影响全网工作,所以是LAN技术中使用最普遍的一种。   适用场合:局域网,对实时性要求不高的环境。   分布式拓扑结构   分布式结构的网络是将分布在不同地点的计算机通过线路互连起来的一种网络形式。   分布式结构的网络具有如下特点:由于采用分散控制,即使整个网络中的某个局部出现故障,也不会影响全网的操作,因而具有很高的可靠性;网中的路径选择最短路径算法,故网上延迟时间少,传输速率高,但控制复杂;各个节点间均可以直接建立数据链路,信息流程最短;便于全网范围内的资源共享。缺点为连接线路用电缆长,造价高;网络管理软件复杂;报文分组交换、路径选择、流向控制复杂;在一般局域网中不采用这种结构。   树型拓扑结构   树型结构是分级的集中控制式网络,与星型相比,它的通信线路总长度短,成本较低,节点易于扩充,寻找路径比较方便,但除了叶节点及其相连的线路外,任一节点或其相连的线路故障都会使系统受到影响。   网状拓扑结构   在网状拓扑结构中,网络的每台设备之间均有点到点的链路连接,这种连接不经济,只有每个站点都要频繁发送信息时才使用这种方法。它的安装也复杂,但系统可靠性高,容错能力强。有时也称为分布式结构。   适用场合: 主要用于地域范围大、入网主机多(机型多)的环境,常用于构造广域网络。   蜂窝拓扑结构   蜂窝拓扑结构是无线局域网中常用的结构。它以无线传输介质(微波、卫星、红外等)点到点和多点传输为特征,是一种无线网,适用于城市网、校园网、企业网。

什么是拓扑学?

拓扑学:研究空间、维度与变换等概念的学科

拓扑学的学科起源

有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题。后来在拓扑学的形成中占着重要的地位。譬如哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。 18世纪著名古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧拉于1736年研究并解决了此问题,他把问题归结为如左图的“一笔画”问题,证明上述走法是不可能的。有关图论研究的热点问题。18世纪初普鲁士的哥尼斯堡,有一条河穿过,河上有两个小岛,有七座桥把两个岛与河岸联系起来(如左图上)。有个人提出一个问题:一个步行者怎样才能不重复、不遗漏地一次走完七座桥,最后回到出发点。后来大数学家欧拉把它转化成一个几何问题(如左图下)——一笔画问题。他不仅解决了此问题,且给出了连通图可以一笔画的充要条件是:奇点的数目不是0 个就是2 个(连到一点的数目如是奇数条,就称为奇点,如果是偶数条就称为偶点,要想一笔画成,必须中间点均是偶点,也就是有来路必有另一条去路,奇点只可能在两端,因此任何图能一笔画成,奇点要么没有要么在两端) 在拓扑学的发展历史中,还有一个著名而且重要的关于多面体的定理也和欧拉有关。这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f+v-e=2。根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体。它们是正四面体、正六面体、正八面体、正十二面体、正二十面体。 主条目:四色猜想著名的“四色问题”也是与拓扑学发展有关的问题,又称四色猜想。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时发现:每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,做了100亿种判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。

拓扑学难吗

拓扑学(英语:topology)是近代发展起来的一个数学分支,研究的是几何形体在连续形变,精确地说,双方一一而且双方连续的变换(称为同胚)之下保持不变的性质。在20世纪,拓扑学发展成为数学中一个非常重要的领域。 拓扑学起初叫形势分析学,是德国数学家莱布尼茨1679年提出的名词。十九世纪中期,德国数学家黎曼在复变函数的研究中强调研究函数和积分就必须研究形势分析学。从此开始了现代拓扑学的系统研究。 难与不难,在于个人,尤其是兴趣

 

声明:本文图片、文字、视频等内容来源于互联网,本站无法甄别其准确性,建议谨慎参考,本站不对您因参考本文所带来的任何后果负责!本站尊重并保护知识产权,本文版权归原作者所有,根据《信息网络传播权保护条例》,如果我们转载内容侵犯了您的权利,请及时与我们联系,我们会做删除处理,谢谢。

 

相关内容

宝贝快好(www.bbwell.cn)是领先的宠物健康网站,作为宠物健康知识大百科,免费提供猫咪和狗狗疾病预防常识及常见病治疗及预防方法,养猫养狗的好处坏处和注意事项,是你身边24小时在线的宠物专家,百万网友免费在线咨询提问。